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Abstract. The modified Bogoliubov model where the primordial interaction is replaced by the t matrix is
reinvestigated. It is shown to provide a negative value of the kinetic energy for a strongly interacting dilute
Bose gas, contrary to the original Bogoliubov model. To clear up the origin of this failure, the correct values
of the kinetic and interaction energies of a dilute Bose gas are calculated. It is demonstrated that both the
problem of the negative kinetic energy and the ultraviolet divergence, dating back to the well-known paper
of Lee, Yang and Huang, is connected with an inadequate picture of the short-range boson correlations.
These correlations are reconsidered within the thermodynamically consistent model proposed earlier by
the present authors. Found results are in absolute agreement with the data of the Monte-Carlo calculations
for the hard-sphere Bose gas.

PACS. 05.30.Jp Boson systems – 67.40.Db Quantum statistical theory; ground state, elementary
excitations – 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena

1 Introduction

The observations of the Bose-Einstein condensation in the
magnetically trapped alkali atoms [1] significantly renewed
interest in the theory of the Bose-Einstein condensation
(see, e.g., Ref. [2]) and also motivated its extensive re-
examinations. The standard method, which is widely used
to study the Bose gas of neutral atoms, operates with re-
placing a pairwise interatomic potential by the effective,
or “dressed”, one (this is why below the name “effective-
interaction” is used for the approach whose various repre-
sentations are listed in Ref. [3]). Such a replacement allows
one to overcome calculational obstacles coming from the
fact that realistic potentials are, as a rule, strongly singu-
lar [4]. For a dilute Bose gas this method, in its simplest
form, is reduced to the replacement of the real potential by
the zero-momentum t matrix obtained from the ordinary
two-body problem. In so doing, a new difficulty arises.
Namely, the so-called ultraviolet divergence appears in the
perturbation series. This feature is usually considered as
a nonfundamental one, and textbooks do not draw much
attention to it. However, some troubles compel us to re-
investigate this problem in more detail.

It is well-known that the first microscopical treatment
of the Bose-Einstein condensation in an interacting Bose
gas has been realized by Bogoliubov in his classical pa-
per of 1947 [5] and is concerned with the weak-coupling
regime. In the Bogoliubov model, single-particle excita-
tions coincide with the collective ones, the latter can be
obtained within the dielectric formalism in the random
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phase approximation, which is reduced to summation of
infinite number of the bubble diagrams [6,7]. In order to
generalize the Bogoliubov model to the case of a strongly
singular potential one should take account of the multi-
ple two-particle scattering, and, thus, summarize infinite
number of the ladder [t matrix] diagrams. The result of
this summation is considered to be expressed in the re-
placement of the Fourier transform of the pairwise poten-
tial Φ(k) by the t matrix t = 4π~2a/m, a being the scat-
tering length and m denoting the boson mass. However, it
is the replacement that leads to the ultraviolet divergence.
This can easily be shown with the help of the expansion
of the energy per particle for a weakly interacting Bose
gas in powers of the gas parameter na3

0 (n = N/V is the
boson density):

ε(B) =
2π~2n(a0 + a1)

m
+

2π~2na0

m

128
15
√
π

√
na3

0 + · · ·
(1)

Here a0 and a1 are the leading and next-to-leading terms
in the Born series for the scattering length a given by

a = a0 + a1 + a2 + · · · , (2)

a0 =
m

4π~2
Φ(k = 0), a1 = − m

4π~2

∫
d3k

(2π)3

Φ2(k)
2Tk

, (3)

with Tk = ~2k2/(2m). For more detail see the arti-
cle of Brueckner and Sawada in reference [3] and pa-
per [8]. As it is seen from equation (3), the replacement
Φ(k)→ 4π~2a/m yields a0 → a and a1 →∞. This prob-
lem is considered to be solved since the Ph.D. thesis of
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Nozières (1957) where it has been found that the diver-
gence is an artifact of combining the bubble and t matrix
diagrams [7] and appears due to double account of the
term 2π~2na1/m (a already contains a1!). We emphasize
that there is no double account in the original Bogoliubov
approach (a0 does not include a1). Thus, replacing origi-
nal interaction Φ(k) by the t matrix, one should be careful
and ignore the divergent term proportional to

∫
d3k/k2.

This allows for obtaining the classical result of Lee and
Yang [9] given by

ε =
2π~2na

m

(
1 +

128
15
√
π

√
na3 + · · ·

)
, (4)

and first found in the framework of the binary collision
expansion method. Note that in the pseudopotential for-
mulation escaping the divergence corresponds to using

Veff =
4π~2a

m

∂

∂r
rδ(r) instead of Veff =

4π~2a

m
δ(r) [7].

The present article shows that the trouble that man-
ifests itself in the form of the ultraviolet divergence, dis-
cussed above, can not be cured by removing the divergent
term. Indeed, in the next section the kinetic and inter-
action energies of a strong-coupling Bose gas are investi-
gated. It is shown that the modified Bogoliubov model,
where the original pairwise potential is replaced by the t
matrix, yields incorrect values of these important quanti-
ties. In particular, the kinetic energy turned out to be neg-
ative. Note that the subject of this section is of interest not
only in the particular context of the effective-interaction
scheme. To the best of our knowledge, the interaction and
kinetic energies of a strongly interacting Bose gas have
never been investigated in detail. Moreover, one can find
absolutely different points of view concerning these quan-
tities in literature. For instance, there is opinion that the
mean energy of a Bose gas, taken in the leading order in
the gas parameter na3, is equal to the interaction one [10].
According to another point of view [11], all the mean en-
ergy of a Bose gas of hard spheres is kinetic in the same or-
der. Now there is essential need of clarifying this ambigu-
ous situation because it directly influences interpretation
of the experimental data (see the first paper in Ref. [10]).
Further, in Section 3 the pair distribution function g(r) is
calculated within the effective-interaction approach. This
quantity turned out to be unphysically negative at small
boson separations. Remind that g(|r1− r2|)/V is the den-
sity of the conditional probability of finding one parti-
cle at the point r1 while another is at the point r2. In
Section 4 a correct expression for g(r) is derived with
the help of the Hellmann-Feynman theorem and a vari-
ational theorem for the scattering amplitude. To reveal a
reason of the failure of the effective-interaction scheme,
we consider a representation for g(r) in terms of the in-
medium pair wave functions. On the basis of this formula
one can conclude that the Bogoliubov model modified by
the replacement Φ(k)→ 4π~2a/m does not fit the strong-
coupling regime due to weak-coupling features that sur-
vive in the effective-interaction approach. A possible way
of the strong-coupling generalization of the Bogoliubov
model, which is free from the troubles of the effective-

interaction scheme, is considered in Sections 5, 6 and 7.
It reproduces the result of Lee and Yang (4) and, in addi-
tion, yields correct results for the kinetic and interaction
energies and pair distribution function. Note that we deal
with a systematic calculations in the first two orders of
the expansion in na3. Calculations of the next terms im-
ply additional and rather extended investigations beyond
the scope of the present paper. By the moment, the au-
thors are able to contemplate some important points of
studying the strong-coupling regime only in terms of the
in-medium pair wave functions. How to proceed with this
interesting problem in the framework of the more familiar
Green’s function method is an open question.

2 The interaction and kinetic energies

Let us start from the original Bogoliubov model and find
the expansions of the kinetic and interaction energies
in powers of the weak-coupling gas parameter na3

0. The
most simple way of doing this is based on the well-known
Hellmann-Feynman theorem given by

δE = 〈δĤ〉. (5)

Here 〈· · · 〉 = 〈0| · · · |0〉 stands for the ground-state aver-
age, δE and δĤ are infinitesimal changes of the ground-
state energy E = 〈Ĥ〉 and the Hamiltonian

Ĥ = −
∑
i

~2∇2
i

2m
+

1
2

∑
i6=j

γΦ(|ri − rj |), (6)

where γ is an auxiliary parameter, the coupling constant,
which should be put equal to unity in final formulae. Ac-
cording to this theorem, we have for the kinetic and inter-
action energies per particle

εint =
n

2

∫
d3r γΦ(r)g(r) = γ

∂ε

∂γ
, (7)

εkin =
∫

d3k

(2π)3
Tk
nk
n

= −m ∂ε

∂m
, (8)

where ε = E/N = εkin + εint is the total energy per
particle, nk denotes the occupation number. From equa-
tions (1, 3, 7 and 8) one can derive for the original
Bogoliubov (B) model the following equations:

ε
(B)
int =

2π~2n

m

(
a0 + 2a1 + a0

64
3
√
π

√
na3

0 + · · ·
)
, (9)

ε
(B)
kin =

2π~2n

m

(
−a1 − a0

64
5
√
π

√
na3

0 + · · ·
)
. (10)

We remark that a1 < 0 and, therefore, εkin in equa-
tion (10) is positive. One can see that εkin � εint (|a1| �
a0!) and, thus, the main part of the mean energy comes
from the boson-boson interaction in the weak-coupling
regime. It should be stressed that the formulae (9) and
(10) can be obtained directly from the Bogoliubov ex-
pressions for nk and g(r), since the original Bogoliubov
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model is fully consistent. Now what we have for the mod-
ified Bogoliubov model with the original interaction Φ(k)
replaced by t = 4π~2a/m? Substituting a for a0 and re-
moving the terms depending on a1, one can readily obtain
for the modified Bogoliubov approach (mB) the following
relations:

ε
(mB)
int =

2π~2an

m

(
1 +

64
3
√
π

√
na3 + · · ·

)
, (11)

ε
(mB)
kin = −2π~2an

m

64
5
√
π

√
na3 + · · · (12)

It is known that a should be positive, otherwise the Bose
gas would be unstable. In this case ε(mB)

kin in equation (12)
is negative. Thus, the result given by equations (11)
and (12) can not be correct.

What are the true values of εkin and εint in the strong-
coupling regime? This can again be clarified with the help
of the Hellmann-Feynman theorem (5). However, first of
all one should prove a useful variational theorem:

δU (0)(0) =
∫

d3r
[
ψ(0)(r)δ

(
−~

2

m
∇2
)
ψ(0)(r)

+ϕ(0)(r)δ
(
Φ(r)

)
ϕ(0)(r)

]
, (13)

where we define the scattering amplitude by the relation

U (0)(k) =
∫

d3r ϕ(0)(r)Φ(r) exp(ikr), (14)

and ϕ(0)(r) = 1 + ψ(0)(r) is the solution of the two-body
Schrödinger equation in the centre-of-mass system

−~
2

m
∇2ϕ(0)(r) + Φ(r)ϕ(0)(r) = 0 (15)

with the asymptotic behaviour at r →∞

ϕ(0)(r)→ 1− a/r. (16)

From equations (15) and (16) it follows that U (0)(0) =
4π~2a/m. Relation (13) can be proved representing equa-
tion (14) in the form

U (0)(0) =
∫

d3r
[~2

m
|∇ψ(0)(r)|2 + [ϕ(0)(r)]2Φ(r)

]
, (17)

using integration by parts, and taking into account
the Schrödinger equation (15) and the boundary condi-
tion (16). Further, varying equation (17), we get equa-
tion (13) with equations (15) and (16) taken into account.

From the theorem (13) it follows that

γ
∂a

∂γ
= m

∂a

∂m
= a− b =

m

4π~2

∫
d3r [ϕ(0)(r)]2Φ(r),

(18)

where we introduce by definition the quantity

b =
1

4π

∫
d3r

∣∣∇ψ(0)(r)
∣∣2. (19)

As it is seen, equations (4, 8, 7) and (18) provide the
following expressions:

εint =
2π~2(a− b)n

m

(
1 +

64
3
√
π

√
na3 + · · ·

)
, (20)

εkin =
2π~2bn

m

(
1 +

64
3
√
π

√
na3

(
1− 3a

5b

)
+ · · ·

)
. (21)

Equation (19) implies that b is a positive quantity that
can be considered as a new characteristic length. We stress
that b is expressed in terms of a and its derivatives (see
Eq. (18)) and determined by a shape of the interaction
potential. For example, when Φ(r) is the hard-sphere po-
tential

Φ(r) =
{

+∞, r < a
0, r > a,

(22)

we have b = a, which follows from the obvious relations
∂a/∂γ = ∂a/∂m = 0. While for the weak-coupling po-
tential [4] b ' −a1, a ' a0, and, hence, b � a. The
latter implies that εint ≈ ε and εkin ≈ 0 in the weak-
coupling regime. This allows for concluding that εint and
εkin depends on a particular shape of the interaction
potential even in the leading order of the expansion in
na3. Equations (20) and (21) testify that in the case of
the hard-sphere interaction (22) all the mean energy is
kinetic, which agrees with the expectation of Lieb and
Yngvason [11] and definitely excludes the variant adopted
in reference [10]. One can see that this result is rather
general: for the hard-sphere potential (22) the interaction
energy is equal to zero for any, even very high, density. In-
deed, Φ(r) given by (22) can be thought of as the limiting
case of the repulsive potential

Φ(r) =
{
V0, r < a
0, r > a.

It is clear that saturation takes place when V0 � ε: further
increase of the parameter V0 does not change the energy
per particle ε. Hence, according to equation (7), εint = 0
because ∂ε/∂γ = 0 at γ = 1 in the limit V0 → +∞. Thus,
the incorrect results of the effective-interaction scheme
given by equations (11) and (12) are, say, of the weak-
coupling character as they imply the relations εint ≈ ε
and εkin ≈ 0 in the leading order.

3 Pair distribution function
in the effective-interaction approach

It turned out that the trouble concerning the interaction
and kinetic energy is accompanied within the effective-
interaction approach by the problem related to the pair
spatial correlations. Let us show this with the help of the
Beliaev’s paper and article of Hugenholtz and Pines. In
the latter the structural factor S(k) has been calculated.
We can employ it to find the pair distribution function
g(r) with the well-known relation:

g(r) = 1 +
1
n

∫
d3k

(2π)3
[S(k)− 1] exp(ikr). (23)
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However, Hugenholtz and Pines [3] restricted themselves
to the approximation valid at k → 0, which makes it im-
possible to integrate their result to get g(r). So, their cal-
culations are repeated below but not involving the argu-
ment of k → 0. They investigated S(k) with the help of
the Green function

Fk(t− t′) = − i
~
〈0|T{ρ̂k(t)ρ̂−k(t′)}|0〉, (24)

where ρ̂k =
∑

k â
†
qâq+k is the Fourier transform of the

density operator. According to the paper of Hugenholtz
and Pines [3], in the lowest order in the condensate de-
pletion (n − n0)/n (when one can take n = n0, n0 is the
density of the condensate) the quantity Fk(t− t′) can be
written as

Fk(t− t′) = − i
~
N〈0|T{â†−k(t)+̂ak(t)}{â†k(t′)+̂a−k(t′)}|0〉,

(25)

so that its Fourier transform is given by

F (k, ω) =

N
[
2Tk +Σ+

11 +Σ−11 − 2µ− 2Σ02

][
~ω− 1

2 (Σ+
11−Σ−11)

]2−[Tk−µ+ 1
2 (Σ+

11+Σ−11)
]2

+Σ2
02+iδ

,

(26)

where Σ+
11, Σ

−
11 and Σ02 are the effective potentials in-

troduced by Beliaev; µ stands for the chemical potential.
Beliaev has found that in the lowest order in the con-
densate depletion the effective potentials and µ obey the
following relations:

µ = nf(0, 0), Σ02 = nf(k, 0), Σ±11 = 2nfs(k/2,k/2).
(27)

Here the expression f(k,p) is the “non-diagonal” scatter-
ing amplitude:

f(k,p) =
∫

d3rϕ(0)
p (r)Φ(r) exp(−ikr), (28)

where ϕ(0)
p (r) obeys the Schrödinger equation (15) with

the right-hand side equal to (~2p2/m)ϕ(0)
p (r) [12]. Besides,

fs(k,k′) = [f(k,k′) + f(−k,k′)]/2. Substituting equa-
tion (27) in equation (26), we arrive at

F (k, ω) =
2N
[
Tk+n

(
2fs(k/2,k/2)−f(k, 0)−f(0, 0)

)]
~2 (ω − ωk + iδ) (ω + ωk − iδ)

with

~ωk =
√(

Tk+ 2nfs(k/2,k/2)− nf(0, 0)
)2 − n2f2(k, 0).

Now, to derive the structural factor S(k), one should uti-
lize the definition (24) at t = t′:

S(k) =
〈ρ̂kρ̂−k〉
N

=
1
N

+∞∫
−∞

dω
i~
2π
F (k, ω).

After transparent integration one can find

S(k) =
Tk + n

(
2fs(k/2,k/2)− f(k, 0)− f(0, 0)

)
~ωk

· (29)

With the help of the limiting relation at k→ 0

fs(k/2,k/2) ' f(k, 0) ' f(0, 0) =
4π~2a

m

equation (29) is reduced to the familiar expression

S(k) ' Tk
~ωk

' Tk√
T 2
k + 2nTkf(0, 0)

=
k2

√
k4 + 16πnak2

·

(30)

As it has been mentioned before, equation (30) can not be
used in equation (23) because the integral diverges in this
situation at large momenta. On the contrary, the exact (in
the lowest order in the depletion) variant (29) can be em-
ployed without problems concerning integration. Inserting
equation (29) in equation (23), at n→ 0 we get

g(r)→ 1−
∫

d3k

(2π)3

f(k, 0)
Tk

exp(ikr). (31)

Equations (15) and (28) at p = 0 allow for representing
equation (31) in the limit n→ 0 as

lim
n→0

g(r) = 1 + 2ψ(0)(r). (32)

Now we can easily be convinced that the result for g(r) de-
rived within the effective-interaction scheme is inadequate
in the strong-coupling regime [4]. Indeed, in this regime
ϕ(0)(r = 0) = 0 and, by definition, ψ(0)(r = 0) = −1.
This, taken together with equation (32), leads to g(r =
0) → −1 when n → 0. Thus, the pair distribution func-
tion inferred from equation (29) is negative at small boson
separations, which implies unphysical picture of the short-
range boson correlations.

In addition, one can see from equation (32) that the
effective-interaction approach is not self-consistent. In-
deed, in the case of a strongly singular potential we have
g(r = 0) → −1 at n → 0. Then, from the first equality
in equation (7) and equation (32) one can find ε

(mB)
int to

be infinite (one more divergence!). However, equation (11)
gives the finite value for ε(mB)

int . Thus, two different ways
of calculating the interaction energy yield two different
results.

4 Pair wave functions

Now the question arises: what behaviour is correct for g(r)
in a dilute strongly interacting Bose gas? This can be clar-
ified with the help of the theorems (5) and (13), starting
from the correct expansion (4). For a homogeneous system
the pair distribution function can be represented as

g(r) =
V

N(N − 1)

〈∑
i6=j

δ(r− ri + rj)

〉
·
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Here δ(r) stands for the Dirac’s delta-function. The
Hellman-Feynman theorem (5) yields

g(r) =
2
n

δε

δΦ(r)
,

where we put (N−1)/V ' n in the thermodynamic limit.
Substituting the expression (4) and using the theorem
(13), we arrive at

g(r) = [ϕ(0)(r)]2
(

1 +
64

3
√
π

√
na3 + · · ·

)
. (33)

This equation is discussed in detail in Section 6. In the
limit n → 0 from equation (33) we obtain the expression
known since the Bogoliubov’s article (see the concluding
part of his classical paper [5], where a possible way of
going beyond the Born approximation is discussed):

lim
n→0

g(r) =
[
ϕ(0)(r)

]2 =
(
1 + ψ(0)(r)

)2
. (34)

Here ϕ(0)(r) obeys the Schrödinger equation (15) with the
boundary condition (16). To compare the results given
by equations (32) and (34), let us consider the simplest
case of the hard-sphere pairwise interaction defined by
equation (22). In this case we get

ϕ(0)(r) =
{

0, r ≤ a
1− a/r, r > a.

(35)

The data found from equations (32) and (34) for the hard-
sphere bosons are presented in Figure 1. As it is seen, at
small particle separations r . 3a the difference between
the curves (1) and (2) is essential, while at large r these
curves are close to one another. We emphasize that the
incorrect behaviour at the short distances is related to
the modified Bogoliubov’s model (with the replacement
Φ(k) → 2π~2a/m) but not to the original one developed
for the case of a weakly interacting Bose gas.

The failure of the effective-interaction approach can be
understood with the help of the interesting relation con-
necting the pair distribution function with the in-medium
pair wave functions and following from the Bogoliubov
principle of the correlation weakening [13–15]. We remind
that the pair wave functions, by definition, are the eigen-
functions of the reduced density matrix of the second or-
der. For the Bose gas, a system with a small condensate
depletion (n − n0)/n � 1, the pair distribution function
can be written as

g(r) =
(n0

n

)2

ϕ2(r) + 2
n0

n

∫
d3q

(2π)3

nq
n
ϕ2

q/2(r), (36)

which is accurate to the next-to-leading order in (n −
n0)/n [16]. Another restriction for this representation is
an assumption that there are no bound pair states (see de-
tails in Ref. [13]). In equation (36) ϕ(r) is the in-medium
pair wave function of two condensed bosons; nq = 〈a†qaq〉;
the quantity ϕq/2(r) denotes the in-medium wave function
of the relative motion of the pair of bosons with the total

� � � � � � � � � ��

��

�

�

�

�

U�D

J�U�

Fig. 1. The pair distribution function for the hard-sphere
bosons in the limit n→ 0: 1 – the data of equation (34); 2 – the
result of the effective-interaction approach [3], equation (32).
At r < 2a equation (32) yields unphysically negative values for
g(r).

momentum ~q. This pair includes one condensed and one
uncondensed particle. The functions ϕ(r) and ϕq/2(r) are
chosen as real quantities. It is also convenient to introduce
the in-medium scattering waves ψ(r) and ψp(r) (p 6= 0)
given by

ϕ(r) = 1 + ψ(r), ϕp(r) =
√

2 cos(pr) + ψp(r) (37)

with the boundary conditions at r →∞
ψ(r), ψp(r)→ 0. (38)

The Fourier transforms of the scattering waves can be ex-
pressed in terms of the Bose operators a†p and ap [13]:

ψ(k) =
〈aka−k〉
n0

, ψp(k) =
√

V

2n0

〈a†2pap+kap−k〉
n2p

· (39)

At n → 0 the in-medium pair wave functions tend to
solutions of the ordinary two-body problem. For exam-
ple, ϕ(r) → ϕ(0)(r). Hence, as the condensate depletion
(n− n0)/n approaches zero when n→ 0, equation (36) is
reduced to the Bogoliubov’s equation (34). A weakly in-
teracting Bose gas is characterized by a minor role of the
particle scattering, so that |ψ(r)| � 1 and |ψp(r)| � 1.
In particular, the Bogoliubov model of a weak-coupling
Bose gas implies ψp(r) = 0 [13,14], while ψ(r) 6= 0. Thus,
within the Bogoliubov model, equation (36) can be ap-
proximated as

g(r) = 1 + 2ψ(r) +
2
n

∫
d3k

(2π)3
nk exp(ikr), (40)

where the terms of the order of (n−n0)2/n2 and ψ(r)(n−
n0)/n have been ignored. At n→ 0 one can find [8,14]

g(r)→ 1 + 2ψ(0)
B (r), (41)
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where ψ(0)
B = ϕ

(0)
B (r) − 1 obeys the equation

−~
2

m
∇2ϕ

(0)
B (r) + Φ(r) = 0, (42)

which is the two-body Schrödinger equation (15) taken in
the Born approximation. We stress that equations (40–42)
are related to the original Bogoliubov model. As to the
modified Bogoliubov approach with the t matrix, it pro-
duces equation (32). Now we are able to explain the fail-
ure of the effective-interaction scheme. The replacement
of the original interaction Φ(k) by the t matrix leads to
passage from ψ

(0)
B (r) to ψ(0)(r). However, it does not in-

fluence the Bogoliubov ansatz (40) for the relation between
the pair distribution function and the pair wave func-
tions. Substituting ψ(k) = 〈aka−k〉/n0 and nk = 〈a†kak〉
in equation (40) and using equation (23), one can see
that the approximation (40) is consistent with the ap-
proximation (25) for the Green function (24). Thus, the
effective-interaction scheme combines the features of both
the strong- and weak-coupling regimes, and this is the ac-
tual reason for its problems discussed in the previous sec-
tions. In particular, the ultraviolet divergence does come
from the double account mentioned in Section 1, but our
analysis reveals that the double account, in turn, is a
consequence of the combination just pointed out. Note
that the thermodynamic inconsistency of the modified
Bogoliubov model, found in our previous publications
[8,14], results from this combination, too.

5 Strong-coupling generalization
of the Bogoliubov model

It follows from the consideration given above that in
the strong-coupling regime one should leave the effective-
interaction approach and develop a new one. What way
should one prefer? At present the authors have no final
solution providing the solid theoretical scheme and mak-
ing it possible to realize systematic calculations like in
the weak-coupling case. However, we can propose a rea-
sonable strong-coupling generalization of the Bogoliubov
model based on equation (36) and semi-phenomenological
relation (44) discussed below. This generalization is justi-
fied as it reproduces the result of Lee and Yang (4), gives
correct picture of the short-range particle correlations, and
yields equations (20) and (21). Besides, the way proposed
provides self-consistent calculations of the in-medium pair
wave functions approaching solutions of the ordinary two-
body problem at n → 0. The model considered below is
similar to the Brueckner theory (see Sects. 36 and 41 in
Ref. [17]) but with one advantageous exception. The point
is that the Brueckner theory implies the momentum dis-
tribution of interacting particles to be the same as in an
ideal gas. As to our model, it results in a system of equa-
tions connecting the in-medium pair wave functions with
the momentum distribution.

In addition to equation (36), the proposed strong-
coupling generalization of the Bogoliubov model involves

two other relations. The first is the familiar expression for
the mean energy per particle

ε =
∫

d3k

(2π)3
Tk
nk
n

+
n

2

∫
d3r g(r)Φ(r), (43)

which can be found in any textbook on statistical mechan-
ics. The second is, say, the semi-phenomenological relation
that connects the scattering waves (37) with the momen-
tum distribution nk:

nk(nk + 1) = n2
0ψ

2(k) + 2n0

∫
d3q

(2π)3
nqψ

2
q/2(k). (44)

It is worth saying several words about equation (44). This
equation represents, in particular, the well-known fact
that when there is no scattering [interaction] in the sys-
tem, there are no uncondensed bosons nk = 0 [18]. The
larger interaction, the larger depletion of the Bose con-
densate. Equation (44) generalizes the similar relation of
the Bogoliubov model given by (see Refs. [8,14])

nk(nk + 1) = n2ψ2(k). (45)

The generalization (44) has been chosen in [8,14] for the
following reasons. First, it provides the relation

√
2ψ(r) =

limp→0 ψp(r) as well as
√

2ϕ(r) = lim
p→0

ϕp(r), (46)

which can be inferred from equations (37) and (38). Sec-
ond, it leads to the correct thermodynamics and behaviour
of g(r) at short distances for a dilute Bose gas in the
leading and next-to-leading orders in na3. Third, the re-
lation (44) results in equation (54) that gives not only
short-range but also correct long-range behaviour of ϕ(r).
A shortcoming of this generalization is that it may be not
unique, but it is the simplest one that provides the points
mentioned above.

Equations (36) and (43) make it possible to express ε
in terms of the pair wave functions and momentum dis-
tribution. So, a variational procedure can be employed to
determine these quantities. Perturbing ψ(k) and nk and
bearing in mind (44), from equations (36) and (43) we find
the following equation [14]:

−2T̃kψ(k) = U(k)
[
1 + 2

(
nk + nψ(k)

)]
, (47)

where ψ(k) and ψp(k) are the Fourier transforms of the
scattering waves (37). Here U(k) and T̃k are defined by

U(k) =
∫

d3r ϕ(r)Φ(r) exp(−ikr), (48)

T̃k = Tk + ntk, (49)

where tk = U ′(k)− U(k) and

U ′(k) =
∫

d3r
(
ϕ2

k/2(r) − ϕ2(r)
)
Φ(r)

−
∫

d3q

(2π)3

U(q)
(
ψ2

k/2(q) − ψ2(q)
)

ψ(q)
· (50)
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Note that tk ∝ k4 for k → 0 [14], and T̃k/Tk → 1 when
k →∞. So, at low momenta and small densities we have
ntk � Tk. Owing to this property the difference between
Tk and T̃k does not play a role when calculating the first
two terms of the low-density expansions for the basic ther-
modynamic quantities. Therefore, at sufficiently small val-
ues of n equation (47) is reduced to

~2

m
∇2ϕ(r) = ϕ(r)Φ(r)

+ n

∫
d3y ϕ(y)Φ(y)

(
gtr(|r− y|) − 1

)
, (51)

where gtr(r) stands for the truncated pair distribu-
tion function that is equal to the right-hand side of
equation (40) even beyond the weak-coupling regime.
Equation (51) is very similar to the Bethe-Goldstone
equation [19]. However, there is also difference between
them. Indeed, gtr depends not only on the scattering wave
ψ(k) but on the momentum distribution nk, too. While
the Bethe-Goldstone equation involves one unknown, the
pair wave function.

Equations (36) and (44) are accurate to the next-to-
leading order in (n − n0)/n, then, equation (47) can be
accurate only to the leading order in (n−n0)/n. So, to find
ψ(k) and nk, one should solve equation (47) in conjunction
with equation (44) taken in the approximation valid to the
leading order in the condensate depletion. In other words,
one has to consider the system of equations (45) and (47)
which has the following solution:

nk =
1
2

(
T̃k + nU(k)√
T̃ 2
k + 2nT̃kU(k)

− 1

)
, (52)

ψ(k) = −1
2

U(k)√
T̃ 2
k + 2nT̃kU(k)

· (53)

Note that as to the scattering states of a pair made of
one condensed and one uncondensed boson, the goal of
the present investigation makes it possible not to go into
details. Below it is only sufficient to limit ourselves to the
relation (46).

In the zero-density limit, equation (53) is reduced to
ψ(k) = ψ(0)(k) = −U (0)(k)/(2Tk), which can be rewritten
in the form of equation (15). So, at sufficiently small densi-
ties we can express the quantities ψ(k) and nk in terms of
the vacuum scattering amplitude U (0)(k) given by equa-
tion (14) (in the Beliaev’s notations U (0)(k) = f(k, 0)).
This is totally consistent with the well-known argument
of Landau [20] according to which the thermodynamics of
dilute quantum gases is determined by the vacuum scat-
tering amplitude. Note that the expressions for ψ(k) and
nk derived within the original Bogoliubov model can be
obtained [8,14] from equations (52) and (53) with replace-
ment of T̃k and U(k) by Tk and Φ(k), respectively. So, in
what concerns the expressions for nk and ψ(k), the situa-
tion looks as if we operated with a Bose gas of weakly in-
teracting quasiparticles with the renormalized kinetic en-
ergy T̃k and effective interaction U(r) = ϕ(r)Φ(r). This

is indeed close to the expectations based on the effective-
interaction approach of the papers [3].

6 Short-range boson spatial correlations

Now, to elaborate on the picture of the short-range boson
correlations, let us investigate how the correlation hole
stipulated by the repulsion between bosons at small sep-
arations changes under the influence of the surrounding
bosons. At n→ 0 this hole is completely specified by the
condensate-condensate pair wave function ϕ(r), which can
be found from the definition (48). Using this definition and
equation (53), for the scattering amplitude one can find

U(k) = Φ(k)− 1
2

∫
d3q

(2π)3

Φ(|k− q|)U(q)√
T̃ 2
q + 2nT̃qU(q)

, (54)

which is the in-medium Lippmann-Schwinger equation.
Let us rewrite equation (54) in the form

U(k) = Φ(k)− 1
2

∫
d3q

(2π)3

Φ(|k− q|)U(q)
Tq

− I,

where for I we have

I =
1
2

∫
d3q

(2π)3

[
Φ(|k− q|)U(q)√
T̃ 2
q + 2nT̃qU(q)

− Φ(|k− q|)U(q)
Tq

]
.

Performing the “scaling” substitution

q = q′
√

2mn/~ (55)

in the integral and, then, taking the zero-density limit in
the integrand, for n→ 0 we find [21]

I = −αΦ(k), α =

√
nm3

π2~3
U3/2(0). (56)

From equations (54) and (56) it now follows that

U(k)− U (0)(k) = αΦ(k)

−
∫

d3q

(2π)3

Φ(|k− q|)
2Tq

[
U(q)− U (0)(q)

]
, (57)

where U (0)(k) obeys equation (54) with n = 0, i.e. the
standard Lippmann-Schwinger equation. Introducing the
quantity ξ(q) = −(U(q) − U (0)(q))/(2Tq), for its Fourier
transform ξ(r) we find the equation that is nothing else
but the Schrödinger equation (15) with ϕ(0)(r) replaced
by α + ξ(r). As ξ(r) → 0 when r → ∞, we can conclude
that ξ(r) = αψ(0)(r). Hence, for n→ 0 we get

U(k) ' U (0)(k)
(

1 + γ(k, n)
8√
π

√
na3

)
. (58)

Here γ(k, n)→ 1 when n→ 0. At k = 0 the derived result
for, say, the in-medium scattering amplitude U(k) coin-
cides with the expansion in na3 for the effective potential
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found within the effective-interaction approach at the zero
temperature (see, e.g., the review [22], Eq. (4.27)). This
shows once more that there are actual parallels between
our model and approach of reference [3]. However, these
parallels are accompanied by significant differences. First,
the in-medium Lippmann-Schwinger equation (54) is not a
variant of the t matrix equation which is frequency depen-
dent, contrary to equation (54). Second, equation (54) has
been found beyond any diagram technique by means of the
variational procedure. One of its important consequences
is that the pair wave functions that “generate” the in-
medium scattering amplitudes (see Eq. (48) and Eq. (66)
below) in our approach coincide with the pair wave func-
tions that make a contribution to g(r) (see Eq. (36)). By
contrast, the modified Bogoliubov model implies the plane
waves for ϕp(r) (p 6= 0) in the pair distribution function
(40) (see Sect. 4), while one certainly goes beyond the
plane-wave approximation when calculating t matrix cor-
responding to a pair of particles with nonzero total mo-
menta.

With the help of equation (58), at n→ 0 we obtain the
following in-medium renormalization for ϕ(0)(r) at short
distances:

ϕ(r) ' ϕ(0)(r)
(

1 +
8
√
na3

√
π

)
. (59)

Equation (59) is indeed a short-range approximation, and
this can be understood from the fact that, at sufficiently
large momenta k, the main contribution in the integral
in the right-hand side of equation (54) comes from the
large momenta q. As limq→∞ U(q)/T̃q = 0, then for
k → ∞ equation (54) is also (like at n → 0) reduced to
the two-body Lippmann-Schwinger equation, and, thus,
ϕ(r) obeys the Schrödinger equation (15) at small boson
separations. In order to explain the origin of the factor
C = 1 + 8

√
na3/

√
π in equation (59), we remind that the

boundary conditions (38), involved implicitly in the in-
medium Lippmann-Schwinger equation (54), are valid for
r � r0, where r0 = n−1/3 is the mean distance between
two particles in the gas. The wave function ϕ(r), related
to a couple of bosons in the Bose-Einstein condensate,
does obey (15) at r → 0, but it differs from ϕ(0)(r), sub-
jected to the boundary condition (16), by the factor that
is determined by the in-medium effects. Thus, the range of
validity of equation (59) is restricted by the region r . r0;
in the vicinity of r0 the behaviour of ϕ(r) is rather com-
plicated; and for r� r0 the function ϕ(r) is subjected to
the following asymptotics:

ψ(r) = ϕ(r) − 1 ' − 1
2π3/2

√
a

n

1
r2
. (60)

The latter evaluation can be obtained from equation (53),
which yields ψ(k) ' −

√
πa/n/k for k → 0, and at r →∞

we arrive at equation (60), contrary to the two-body prob-
lem, which implies ψ(0)(r) ' −a/r. Thus, the unusual
“overscreening” takes place for the wave function ϕ(r) ow-
ing to in-medium effects.

Now we are able to calculate the pair distribution func-
tion for a dilute Bose gas from equation (36). By means of
the substitution (55) in the integral in equation (36) one
can rewrite the pair distribution function for n→ 0 in the
form

g(r) '
(

1 + 2
n− n0

n

)
ϕ2(r). (61)

where the relation (46) is implied. This is short-range ap-
proximation for g(r), for the oscillating function cos(kr)
makes an important contribution to the integral in equa-
tion (36) at large r. To obtain a more concrete informa-
tion from equation (61), one should calculate the conden-
sate depletion. It can be derived from equation (52) with
the “scaling” substitution given by equation (55). This
leads to

n− n0

n
=
∫

d3q

(2π)3

nq
n

=
8
√
na3

3
√
π

+ · · · (62)

The result again coincides with that of the effective-
interaction scheme because the momentum distribution
(52) is very close to nk found within the modified
Bogoliubov model. Rewriting equation (61) with the help
of equations (59) and (62), we arrive at the expression
(33) that has earlier been obtained by means of the theo-
rems (5) and (13). One can see that equation (33) is also
violated at the mean distance between particles, r0, since
equation (59) for ϕ(r) is broken when r & r0.

For strongly singular potentials, when ϕ(0)(r = 0) = 0,
the correct result g(r = 0) = 0 takes place according to
equation (33). As one can see from (33), the correlation
hole coming from the repulsion of bosons at small particle
separations gets less marked with an increase of the den-
sity of the surrounding bosons, which is consistent with
usual expectations concerning the particle spatial separa-
tions.

Now it is interesting to compare the result given by
equation (33) with the data of the Monte-Carlo calcula-
tions for the hard-spheres [23]. With the two-body wave
function (35) for the hard-sphere interaction (22), equa-
tion (33) reads

g(r) =
{

0, r ≤ a
(1− a/r)2[1 + 64

√
na3/(3

√
π)], r > a.

(63)

The results are displayed in Figure 2 for various values of
the gas parameter na3. We remark that, strictly speaking,
only the situation when na3 = 10−4 can be investigated
with equation (63) because even at na3 = 10−2 we have
64
√
na3/(3

√
π) ≈ 1.20, so that the next-to-leading order

in equation (33) makes contribution more essential than
that of the leading order in na3. However, as it is seen, the
short-range approximation of equation (63) works well at
small values of r even at na3 = 10−1. This agrees with a
conclusion of Giorgini et al. [23] that equation (4), derived
to the next-to-leading order in na3, provides results very
close to the energy of a dilute Bose gas even at na3 = 10−1.
Agreement of the data of the Monte-Carlo calculations
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Fig. 2. The pair distribution function corresponding to the
hard-sphere potential (22) for various values of the gas pa-
rameter na3. Solid lines – the data of equation (63); �,
4, 5 – the data of the Monte-Carlo calculations [23] for
na3 = 10−4, 10−2, 10−1, respectively. The difference becomes
significant at the mean distance between particles r0, where

r0/a =
�
na3

�−1/3
= 21.5, 4.64, 2.15, respectively. Dotted line

– equation (63) for na3 = 0, one can see that g(r) is essentially
changed even for small values of the gas parameter.

with the results coming from equation (36) can be consid-
ered as the direct positive test supporting the expression
(36), which is based on the Bogoliubov principle of corre-
lation weakening in the strongly interacting Bose gas (see
Ref. [13]).

Concluding this section, let us stress one more that
equations (59) and (33) are correct only for short bo-
son separations. To determine the long- and intermediate-
range behaviour of g(r) with the aim, for example, of find-
ing the structural factor S(k) at all values of k, one should
obtain ϕp(r) for all values of p (remember that only the
limiting relation (46) have been utilized). This investiga-
tion is directly connected with the problem of the rela-
tion between the boson momentum distribution and pair
scattering waves (see Eq. (44)) and needs additional ex-
tended considerations being beyond the scope of this pa-
per. The same concerns the spectrum of elementary exci-
tations. Now, and here the point is, this problem is much
more complicated as compared to the Bogoliubov model
(original or modified). Within the Bogoliubov approach
the long-range behaviour of g(r) is only governed by the
two quantities ψ(k) = 〈aka−k〉/n0 and nk = 〈a†kak〉 (see
Eq. (40)). But now we have the rather complicated func-
tional (36) of nk, ψ(k) and ψp(k) given by equation (39).

7 Thermodynamics of a dilute Bose gas

After the necessary preparations, we are able to turn to
the thermodynamics of a strong-coupling Bose gas. The
most simple way of doing so is to deal with the chemical
potential µ starting from the well-known relation

µ =
1√
n0

∫
d3r′ Φ(|r − r′|)〈ψ†(r′)ψ(r′)ψ(r)〉, (64)

valid in the presence of the Bose condensate [24]. Here
ψ†(r) and ψ(r) stand for the Bose field operators. This
relation follows from the expression for the infinitesimal
change of the grand canonical potential δΩ = 〈δ(Ĥ−µN̂)〉
and the necessary condition of the minimum for Ω with re-
spect to the order parameter N0: ∂Ω(N0, µ, T )/∂N0 = 0,
the Hamiltonian depending on the number of the con-
densed particles owing to the substitution a†0 = a0 =

√
N0.

Equations (39) and (64) lead to

µ = n0U(0) +
√

2
∫

d3q

(2π)3
nqUq/2(q/2), (65)

where the quantity

Up(k) =
∫

d3r ϕp(r)Φ(r) exp(−ikr) (66)

is introduced. The quantities U(k) and Up(k), which can
be called the in-medium scattering amplitudes, differ from
f(k,k′) introduced by Beliaev. The latter is determined
by the solutions of the ordinary two-body problem with
the boundary conditions corresponding to the usual plane-
waves for r → ∞. As to U(k), it is determined from the
in-medium Lippmann-Schwinger equation (54). In order
to obtain the next-to-leading order for µ, it is sufficient
to use the relation

√
2U(k) = limp→0 Up(k), which fol-

lows from equation (46). In this way, employing the sub-
stitution (55) in the integral and taking into consideration
equations (14, 58 and 62), we can rewrite equation (65)
for n→ 0 in the form

µ = nU(0)
(

1 +
n− n0

n
+ · · ·

)
=

4π~2an

m

(
1 +

32
3
√
π

√
na3 + · · ·

)
. (67)

Equation (67), together with the thermodynamic relation
µ = ∂(nε(n))/∂n, yields the Yang-Lee’s result (4).

It is worth noting that we can also use the direct way of
calculating ε based on equation (43). However, one could
come to a wrong conclusion if equation (43) employed
in conjunction with equation (45). To use this way, one
should go beyond equation (45) and take into account the
density correction to that relation,

nk(nk + 1) =
(

1 + 2
n− n0

n

)
ψ2(k), (68)

following from equation (44) at n→ 0. Thus, the prelim-
inary result found in reference [14] should be abandoned
in favour of equation (4).
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The correct behaviour of the pair distribution func-
tion found in the previous section allows for deriving the
correct results for the kinetic and interaction energies by
a direct calculation, even beyond the Hellmann-Feynman
theorem. For example, substituting equation (33) into
equation (7) and taking account of equation (18), one can
immediately find equation (20).

8 Conclusion

In conclusion, we remark that the present paper deals with
the thermodynamics of a Bose gas of strongly interact-
ing particles in the leading and next-to-leading orders of
the expansion in na3. The strong-coupling generalization
of the Bogoliubov model considered here reproduces the
well-known formula of Lee and Yang (4) and, contrary to
the effective-interaction approach of reference [3], yields
correct results for the kinetic and interaction energies and
short-range spatial correlations of bosons. To go further,
additional investigations should be fulfilled. In particular,
it is necessary to solve the problem concerning the rela-
tion that connects the boson momentum distribution with
the scattering waves. The spectrum of the elementary ex-
citations should also be considered within the approach of
references [8,13,14] in order clarify to what extent it differs
from the well-known prediction of the effective-interaction
approach. We, of course, mean the region of intermediate
momenta rather than the linear phonon part, which should
be the same according to the thermodynamic prescription.
This question can not be answered without addressing the
long-range spatial boson correlations.

The authors are grateful to S. Giorgini for making the data
of the Monte-Carlo calculations [23] available to us. This work
was supported by the RFBR grant No. 00-02-17181.
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